
Binary search 
 

Dichotomy is a method for numerically solving equations in a single unknown. 

Consider the equation f(x) = 0 with a continuous function f on the interval [a; b] which 

takes values of different signs at the end points of the interval and which has a single 

root x∗ within [a; b].  

x

a b

x*

f(a) < 0

f(b) > 0

 
To find x∗ approximately, one divides [a; b] into halves and calculates the value of 

f(x1) at the midpoint x1 = (a + b) / 2. If f(x1) ≠ 0, one takes the two intervals [a; 

x1] and [x1; b] and from them selects for the next dichotomy the one at the end points of 

which the values of the function differ in sign. This continued division into halves 

gives a sequence x1, x2, … which converges to the root x∗ with the rate of a geometrical 

progression: 

| xn – x∗ | ≤ (b – a) / 2n, n = 1, 2, … 
 

E-OLYMP 3968. Square root Find such number x that x2 + SQRT(x) = C with no 

less than 6 digits after the decimal point. SQRT(x) is a square root of number x. 

► Consider a function f(x) = x2 + SQRT(x).  

Its obvious that f(0) = 0, f(C) = C2 + SQRT(C) > C. That is, the root of the 

equation 

f(x) = С 

lies on the interval [0; C]. Function f(x) is strictly increasing. Search for the root x 

with a binary search. 
 

Declare a constant EPS and function f(x). 
 
#define EPS 1e-10 

 

double f(double x) 

{ 

  return x * x + sqrt(x); 

} 

 

The main part of the program. Read the value of С. 
 

scanf("%lf",&c); 

 

Set the boundaries of binary search [left; right] = [0; C]. 
 

left = 0; right = c; 
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Run the binary search. 
 

while(right - left > EPS) 

{ 

  middle = (left + right)/ 2; 

  y = f(middle); 

  if (y > c) right = middle; else left = middle; 

} 

 

Print the answer. 
 

printf("%lf\n",left); 

 

E-OLYMP 4420. The root of a cubic equation Given a cubic equation ax3 + 

bx2 + cx + d = 0 (a ≠ 0). It is known that this equation has exactly one root. Find it. 

► Localize the root of equalization f(x) = 0. To do this, find r such that f(-r) * f(r) 

< 0. For example, having initialized r = 1, we will double r at each step until holds an 

inequality f(-r) * f(r) < 0. Thus, we will iterate over intervals [-1; 12; 2], [-4; 4], [-8; 8], 

…. until we find the interval where the root of the equation is located.  

Set l = -r. Further on the interval [l; r] using a binary search (dividing a segment in 

half), we look for a root. 

 

Discrete binary search 
 

E-OLYMP 9016. Binary search Sorted array of n integers is given. You must 

answer q queries: whether the given number x is in the array. 

► In the problem we must find a number in a sorted array. This can be done using 

a binary search. 

Let m be a sorted array of length n consisting of integers. Function 

binary_search(m, m + n, x) returns true if number x is present in the array. The input 

array is read in O(n), q queries are executed in O(qlog2n). 

 

Function lower_bound returns a pointer to the first position where element x can 

be inserted without violating the sorted property of the array. 

2 2 4 6 6 7 7 7 7 9 9 10

lower_bound(m,m+n,7) – m = 5

0 1 2 3 4 5 6 7 8 9 10 11

 
Function upper_bound returns a pointer to the last position where element x can be 

inserted without violating the array's sorted property. 

2 2 4 6 6 7 7 7 7 9 9 10

upper_bound(m,m+n,7) – m = 9

0 1 2 3 4 96 7 85 10 11
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If lower_bound(m, m + n, x) ≠ upper_bound(m, m + n, x), then number x is present 

in array. Otherwise, there is no number x in the array. 

 

2 2 4 6 6 7 7 7 7 9 9 10

upper_bound(m,m+n,8) – m = 9

0 1 2 3 4 96 7 85 10 11

lower_bound(m,m+n,8) – m = 9

 
 

Java function Arrays.binarySearch() returns the index of the element found in the 

array. If array contains multiple keys, then any of its indices are returned. 

2 2 4 6 6 7 7 7 7 9 9 10

Arrays.binarySearch(m,4) = 2

0 1 2 3 4 96 7 85 10 11

Arrays.binarySearch(m,9) = 10
 

 

If x is not present in array m, then function Arrays.binarySearch(m, x) returns 

value –pos – 1, where pos is the index of the first element greater than x. If x is greater 

than all the elements in array m, then pos = m.length. 

2 2 4 6 6 7 7 7 7 9 9 10

Arrays.binarySearch(m,5) = -4

0 1 2 3 4 96 7 85 10 11

Arrays.binarySearch(m,15) = -13

12

 
 

Implementation of own binary search. Let the element x in the array m be 

searched for in the interval [start; end]. Divide the segment in half, put mid = (start + 

end) / 2. If x > m[mid], then x lies on the segment [mid + 1; end]. Otherwise, the search 

should be continued on the segment [start; mid]. 

 

[start; end]

[start; mid] [mid + 1; end]

x > m[mid]x ≤ m[mid]

 
 
int my_bin_search(int *m, int start, int end, int x) 

{ 

  while (start < end) 

  { 

    int mid = (start + end) / 2; 

    if (x > m[mid]) 



      start = mid + 1; 

    else 

      end = mid; 

  } 

  return m[start] == x; 

} 

 

E-OLYMP 9017. Binary search - 1 Sorted array of n integers is given. You must 

answer q queries: how many times the given number x appears in the array. 

► The number of times x occurs in the sorted array is upper_bound(m, m + n, x) –  

lower_bound(m, m + n, x). These functions can be taken from the STL template library 

or implemented independently (for Java). 

Let all n elements of array m be in cells from 0 to n – 1. Then the lower_bound 

and upper_bound can return values from 0 to n. Therefore, binary search should be 

performed within these limits. 

2 2 4 6 6 7 7 7 7 9

my_upper_bound(m,0,10,15) = 10

0 1 2 3 4 96 7 85 10

my_lower_bound(m,0,10,15) = 10

m

 
 
int my_lower_bound(int *m, int start, int end, int x) 

{ 

  while (start < end) 

  { 

    int mid = (start + end) / 2; 

    if (x <= m[mid]) 

      end = mid; 

    else 

      start = mid + 1; 

  } 

  return start; 

} 

 

int my_upper_bound(int *m, int start, int end, int x) 

{ 

  while (start < end) 

  { 

    int mid = (start + end) / 2; 

    if (x >= m[mid]) 

      start = mid + 1; 

    else 

      end = mid; 

  } 

  return start; 

} 

 

E-OLYMP 9018. n-th integer divisible by a or b Given two integers a and b. 

Find the n-th positive integer that is divisible by either a or b. 
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► Let function f(n) computes the number of positive integers in the interval [1; n], 

divisible by either a or b. This number is 

n / a + n / b – n / LCM(a, b) 

Let x be the n-th number. Then x must be the smallest positive integer such that 

f(x) = n. We will search for it with a binary search, starting from the segment [left; 

right] = [1; 109]. Let mid = (left + right) / 2. If f(mid) ≥ n, then the search should be 

continued on the segment [left; mid], otherwise on the segment [mid + 1; right]. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10

 
Consider the first sample, where a = 2, b = 5. It is necessary to find the smallest x 

for which f(x) = 10. Let's calculate some values: 

 f(15) = 15 / 2 + 15 / 5 – 15 / 10 = 7 + 3 – 1 = 9; 

 f(16) = 16 / 2 + 16 / 5 – 16 / 10 = 8 + 3 – 1 = 10; 

 f(17) = 17 / 2 + 17 / 5 – 17 / 10 = 8 + 3 – 1 = 10; 

 f(18) = 18 / 2 + 18 / 5 – 18 / 10 = 9 + 3 – 1 = 11; 

The smallest solution to the equation f(x) = 10 is x = 16. 
 

E-OLYMP 9020. Split into k sub-arrays Given array of n elements and number 

k. Split the given array into k sub-arrays (they must cover all the elements). The 

maximum sub-array sum achievable out of k sub-arrays formed, must be minimum 

possible. Find that possible sub-array sum. 

► The answer can be found by the binary search. Obviously, it is not less than 1 

(the integers in array are positive) and no more than the sum of all numbers. Set left = 1, 

right = the sum of the numbers in the array. Then the minimum possible sub-array sum 

lies on the interval [left; right]. 

Consider a subproblem: is it possible to split an array into k subarrays so that the 

maximum of the sums of all k subarrays will be no more than s0. If array contains at 

least one element greater than s0, then such partition is impossible. Split the original 

array into subarrays, the sum of which elements is no more than s0. If there are no more 

than k such subarrays, the split is possible. 

 

Consider in the second example the required partitions into subarrays for different 

values of s0: 

7 subarrays1 2 3 4 2 3 4 2 3 1s0 = 5

 

4 subarrays1 2 3 4 2 3 4 2 3 1s0 = 9

 

1 2 3 4 2 3 4 2 3 1s0 = 10 3 subarrays
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E-OLYMP 9021. Count the integers of the form 2^x * 3^y Find the number of 

integers from the range [a, b] that can be represented as 2x * 3y (x ≥ 0, y ≥ 0). 

► The amount of required numbers f(a, b) on a segment [a, b] is f(0, b) – f(0, a – 

1). The query f(0, q) means the amount of numbers of the form 2x * 3y, not greater than 

q. We look for the answer using a binary search on array v. 

 

Generate all numbers of the form 2x * 3y , no more than 200. 

x = 0

y

x = 1

0

1

1 2 3 4

3 9 27 81

2 6 18 54 162

x = 2 4 12 36 108

x = 3 8 24 72

x = 4 16 48 144

x = 5 32 96

x = 6 64 192

x = 7 128

2
x
 * 3

y

 
 

Segment [1; 10] contains 7 numbers (highlighted in blue). 

Segment [100; 200] contains 5 numbers (highlighted in green). 

 

Find a solution for segment [10; 20]: 

upper_bound(v.begin(), v.end(), 20) – upper_bound(v.begin(), v.end(), 9) = 3 

8 9 12 16 18 24 27

upper_bound(v.begin(),v.end(),9)

upper_bound(v.begin(),v.end(),20)

... ...

 
Indeed, segment [10; 20] contains 3 numbers of required form: 

12, 16, 18 

 

E-OLYMP 9022. Count the tripples Given three array a, b and c of n integers 

each. Find the number of triplets (ai, bj, ck) such that ai < bj < ck. 
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► Sort the arrays. For each value of bj, using a binary search, find the amount of 

numbers x from array a that are less than bj, as well as the amount of numbers y from 

array c that are greater than bj. Then, for a fixed value of bj, there are x * y desired 

triples (ai, bj, ck). 

 

Consider the following sorted arrays. Let us calculate the number of required 

triples, in which b5 = 10. We have: ai < b5 for i ≤ 5, ck > b5 for k ≥ 7. That is, the 

inequality ai < b5 < ck holds for 1 ≤ i ≤ 5 and 7 ≤ k ≤ 8. The number of triplets (ai, b5, ck) 

is 5 * 2 = 10. 

 

1 1 3 5 7 10 10 15

2 3 3 4 10 12 14 20

1 4 4 6 8 9 13 13

a

b

c

x = 5

y = 2

i

k

ai < b5 < ck

 
 

E-OLYMP 9023. Minimum increments Given array with n positive integers. 

Find the minimum number of operations required so that an Arithmetic Progression 

with the array elements is achieved with common difference as 1. In a single operation, 

any element can be incremented by 1. 

► Let the required least number of operations transform the original array m[0], 

m[1], …, m[n – 1] into x, x + 1, x + 2, …, x + n – 1. Such the smallest value of x will be 

found by binary search. Obviously, that m[0] ≤ x ≤ max(m[0], m[1], …, m[n – 1]). 

A sequence d = [x, x + 1, x + 2, …, x + n – 1] is called suitable if array m can be 

transformed into array d (for this, m[i] ≤ d[i] must hold for all i from 0 up to n – 1). 

 

Сonsider the first test case. Let d = [x, x + 1, x + 2, …, x + n – 1] be an appropriate 

sequence with the minimum sum of elements. Obviously, m[0] = 3 ≤ x ≤ 11 = 

max(m[i]). Using binary search, we look for the smallest x for which the sequence d is 

suitable. 

For example, for x = 6 the sequence d will not be suitable, but for x = 8 it will. 
 

3 6 4 11 5

8 9 10 11 12

5 3 6 0 7 21

3 6 4 11 5

6 7 8 9 10

 
Consider the second test. Start the binary search on the interval 4 ≤ x ≤ 7. For 

example, for x = 4, the sequence d is already suitable. 
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4 4 5 5 7

4 5 6 7 8

0 1 1 2 1 5

m

d

 
 

 

E-OLYMP 1302. Almost prime numbers Almost prime numbers are the non-

prime numbers which are divisible by only a single prime number. In this problem your 

job is to write a program which finds out the number of almost prime numbers within a 

certain range. 

► Almost prime numbers have the form pk,  where p is a prime number, k  2. For 

example, the almost prime numbers are 4, 8, 16, 32, 9, 81, … . As high < 1012, then 

from the definition of almost prime number p < 106. Generate the array primes if length 

1000000 = 106, where primes[i] = 1 if i is prime and primes[i] = 0 otherwise. Then 

generate and sort in array m all the almost primes (their amount equals to 80070).  

Let f(a, b) be the number of almost primes in the range [a..b]. Then  

f(low, high) = f(1, high) – f(1, low – 1) 

The number of almost primes in the range [1 .. n] equals to the position (index), 

where it is possible to insert n into the sorted array m by upper bound preserving the 

sorted order. The index number can be found using binary search on array m by means 

of function upper_bound. 

 

Let’s generate all the almost prime numbers in the range from 1 to 100. First write 

the powers of 2 not greater than 100. Then the powers of 3, 5 and 7. The square of 11 is 

greater than 100, so there are no powers of 11 among the almost primes in the range 

[1..100]. 

4 8 16 32 64 9 27 81 25 49
 

Sort the array: 

4 8 16 32 649 27 8125 49
 

Consider the second test case. In the range from 1 to 20 there are 4 almost prime 

numbers: 4, 8, 9, 16. 
 

E-OLYMP 7329. Construction After finishing his chalet construction, Stepan 

still has n wooden boards, with lengths l1, ..., ln. He decided to build a fishing deck on a 

lake using these boards. 

Stepan believes that the longer deck is, the more fish he will catch! 

Moreover, Stepan, as all fishermen, is very superstitious and trusts all omens. One 

of it – the deck can be build using whole boards only (boards can be cut but not joined). 

Now Stepan is interested what maximum deck length d can be obtained, if needs to use 

m boards. 

► Let’s find the length of the deck d with binary search. Initially let d  [Left; 

Right] = [0; INF]. Consider the next subtask: is it possible to construct the required 
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bridge with length exactly Mid = (Left + Right) / 2 ? To do this, count how many boards 

of length Mid we can get. From the board of length li we can get  Midli /  such boards. 

By cutting you can get 

 


n

i

i Midl
1

/  

boards of length Mid. If in total we can get m boards, set Left = Mid + 1. Otherwise 

set Right = Mid. The answer will be the value of Left – 1. 

 

In the given sample there are 4 boards. It is necessary to build a deck with 6 

boards. If the length of the deck will be 8, then the existing boards can be cut as follows, 

getting 16/8 + 12/8 + 20/8 + 10/8 = 6 boards of length 8. 

 
8 8

16

8 4
12

8 8
20

4

8 2
10

9 7
16

9 3
12

9 9
20

2

9 1
10  

 

If the length of the deck will be 9, then we can get only 16/9 + 12/9 + 20/9 + 10/9 

= 5 boards of length 9, which is less than the required 6. 
 

Binary search in geometry 
 

E-OLYMP 3532. Interesting polygon Vasya drew a convex polygon with sides 

of length 1, 2, 3, ..., n (4 ≤ n ≤ 30), and then built the circle around it. Find the 

radius r of the circle drawn around the polygon by Vasya. 

► We’ll search for the radius by binary search. It's obvious that r > n / 2 and r < 

n2. 

A

B

O

φ
r

r

i

 
Let the length of the side AB be equal to i. Write the cosine theorem for triangle 

AOB: 

i2 = r2 + r2 – 2 * r * r * cosφ  

Or the same as i2 = 2r2 – 2r2cosφ, whence cosφ = (2r2 – i2) / 2r2. Compute the sum 

of angles subtending the sides of the polygon with lengths 1, 2, 3,…, n. If the resulting 

sum of angles is greater than 2π, then the radius should be reduced. Otherwise, the 
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radius should be increased. Find the value of the radius, for example, with an accuracy 

of 10-11. 

 

Declare the constants. 
 
#define EPS 1e-11 

#define PI acos(-1.0) 

 

Read the number of sides n. Set the boundaries of the binary search for the radius 

of the circumscribed circle [Left .. Right] = [n / 2 .. n2]. 
 
scanf("%d",&n); 

Left = n / 2; Right = n * n; 

 

While the length of the segment [Left .. Right] is not less than 10-11, continue the 

binary search. 
 

while(fabs(Right - Left) > EPS) 

{ 

 

Divide the segment [Left .. Right] in half with the Middle point. Assuming the 

radius of the circle to be Middle, calculate in the variable fi the sum of the angles that 

subtend the sides of the polygon. 
 

  Middle = (Left + Right) / 2; 

  for(fi = 0, i = 1; i <= n; i++) 

  { 

    double angle = (2*Middle*Middle - i*i)/(2*Middle*Middle); 

 

If a triangle with sides i, Middle, Middle cannot be constructed, then the cosine 

value of the corresponding angle may go beyond the segment [-1, 1]. Therefore, it is 

necessary to reduce the value of the radius of the circumscribed circle. 
 

    if ((angle < -1.0) || (angle > 1.0)) 

    { 

      fi = 100; break; 

    } 

    fi += acos(angle); 

  } 

 

Depending on the found sum of angles fi, adjust the search segment. 
 

  if (fi > 2*PI) Left = Middle; else Right = Middle; 

} 

 

Print the answer. 
 

printf("%.8lf\n",Left); 

 

E-OLYMP 1506. Crossed ladders A narrow street is lined with tall buildings. An 

x foot long ladder is rested at the base of the building on the right side of the street and 

leans on the building on the left side. An y foot long ladder is rested at the base of the 
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building on the left side of the street and leans on the building on the right side. The 

point where the two ladders cross is exactly c feet from the ground. How wide is the 

street? 

 

► 
A P C

O

B

D
a

b
c

x

y

 

Triangles AOP and ADC are similar: 
AC

AP

b

c
 .  

Triangles COP and CBA are similar: 
CA

CP

a

c
 . 

1
AC

AC

AC

CP

AC

AP

a

c

b

c
. Whence 1

11











ba
c , 

ba

ab

ba

c







11

1
. 

We’ll search for the required street width d = AC with binary search. 

Initially set 0 ≤ d ≤ min(x, y). Given d, x, y find a, b and c. The larger d (with fixed 

x, y), the smaller c. 

 

Read the input data for each test case. 
 
while(scanf("%lf %lf %lf",&x,&y,&c) == 3) 

{ 

 

Set left = 0, right = min(x,y). Further in the while loop, holds the inequality left ≤ d 

≤ right. 
 
  left = 0; 

  if (x < y) right = x; else right = y; 

  d = (left + right) / 2; 

  do 

  { 

 



Compute the values of a, b, c. 
 

    a = sqrt(x*x - d*d); b = sqrt(y*y - d*d); 

    c1 = 1/(1/a + 1/b); 

 

If the found value of c1 is less than the desired c, then it is necessary to reduce the 

upper bound d. Otherwise, you should increase its lower bound. 
 
    if (c1 < c) right = (left + right) / 2; 

           else left = (left + right) / 2; 

    d = (left + right) / 2; 

 

Carry out the calculations to the accuracy required in the problem statement (four 

decimal digits). 
 
  } while (fabs(c1 - c) > 0.00001); 

 

Print the answer. 
 
  printf("%.3lf\n",d); 

} 

 


